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Abstract. In the same vein of discriminative one-shot learning, Siamese networks
allow recognizing an object from a single exemplar with the same class label.
However, they do not take advantage of the underlying structure of the data and the
relationship among the multitude of samples as they only rely on pairs of instances
for training. In this paper, we propose a new quadruplet deep network to examine
the potential connections among the training instances, aiming to achieve a more
powerful representation. We design four shared networks that receive multi-tuple
of instances as inputs and are connected by a novel loss function consisting of
pair-loss and triplet-loss. According to the similarity metric, we select the most
similar and the most dissimilar instances as the positive and negative inputs of
triplet loss from each multi-tuple. We show that this scheme improves the training
performance. Furthermore, we introduce a new weight layer to automatically select
suitable combination weights, which will avoid the conflict between triplet and
pair loss leading to worse performance. We evaluate our quadruplet framework
by model-free tracking-by-detection of objects from a single initial exemplar in
several Visual Object Tracking benchmarks. Our extensive experimental analysis
demonstrates that our tracker achieves superior performance with a real-time
processing speed of 78 frames-per-second (fps).

Keywords: Quadruplet deep network; Visual object tracking; Siamese networks.

1 Introduction

Deep learning models have attracted significant attention thanks to their powerful regres-
sion capacity in a spectrum of applications from speech recognition to natural language
processing and computer vision. It is recognized that training of deep neural networks
requires a large corpus of labeled data to attain generality of the learned models and
robustness of the feature maps. Such networks seem less useful for one-shot learning
tasks where the objective is to learn a model, often in an online fashion, from a single
exemplar (or a few). One exemption is the embedding with Siamese networks [1,2,3]
since it is not necessary to retrain the deep model for a newly given object or class.
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Staple CFnet-conv2 SiamFc-3s Ours

Fig. 1. Sample results of our quadruplet network for visual tracking. By only changing the
training loss on base Siamese network [3] to get more powerful feature, we achieve a significant
improvement on the object tracking task. For instance, our method improves the distance precision
[4] from 30.1% to a higher score of 86.7% on DragonBaby (top row). It also outperforms the
referenced real-time trackers Staple [5] and CFnet-conv2 [6].

Siamese architectures can identify other instances of the target class from its original
exemplar using a fixed model.

Conventional Siamese networks use tuples of two labeled instances for training
[1,7,8,2,3]. They are sensitive to calibration and the adopted notion of similarity vs.
dissimilarity depending on the given context [9]. The requirement of calibration can
be removed by applying triplets for training with a contrastive loss, which favors a
small distance between pairs of exemplars labeled as similar, and a large distance for
pairs labeled dissimilar [9]. At the same time, using triplets enables utilization of the
underlying connections among more than two instances. Our intuition is that more
instances (larger tuples) lead to better performance in the learning process. Therefore,
we design a new network structure adding as many instances into a tuple as possible
(including a triplet and multiple pairs) and connect them with a novel loss combining a
pair-loss and a triplet based contractive-loss. Existing Siamese [3] or triplet networks [9]
do not use the full potential of the training instances since they take randomly sampled
pairs or triplets to construct the training batches. In contrast, our framework aims to select
the triplets that would lead to a powerful representation for a stronger deep network.

In this paper, we introduce a novel quadruplet network for one-shot learning. Our
quadruplet network is a discriminative model to one-shot learning. Given a single
exemplar of a new object class, its learned model can recognize objects of the same
class. To capture the underlying relationships of data samples, we design four branch
networks with shared weights for different inputs such as instances, exemplar, positive
and negative branches. We randomly sample a set of positive and negative instances as
inputs of instances branch. A pair of loss function is designed to connect the exemplar
and instances branch to utilize the underlying relationships of pairs. To achieve the triplet
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of representation, we select the positive instance that is most similar to the exemplar
and the negative instance that is most dissimilar as the inputs of positive and negative
branches, respectively. Then, we use a contractive loss function to measure the similarity
of this triplet. Finally, the weighted average of the pair loss and the contractive loss is
assigned as the final loss.

The triplet loss is the key to utilize the underlying connections among instances
to achieve improved performance. To combine it and pair loss, a simple solution is to
apply a weighted average with prior weights between these two losses. However, directly
applying prior weights maybe not improve even reduce performance. For example, we
test our approach with prior weights for visual object tracking on OTB-2013 benchmark
[4] while the distance precision is reduced from 0.809 to 0.800. Thus, we propose a
weight layer to automatically choose suitable combination weights during training to
solve this problem. We evaluate the quadruplet network with one-shot learning for visual
object tracking. SiamFc-3s [3] is our baseline tracker. We apply our quadruplet network
instead of its Siamese network to train the shared net and adapt the same mechanism
for online tracking. As shown in Fig. 1, our training method achieves better tracking
accuracy, which demonstrates the more powerful representation of our framework. In
several popular tracking benchmarks, our experimental results show that the tracker runs
at high real-time speed (78 frames-per-second on OTB-2013) and achieves excellent
results compared with recent state-of-the-art real-time trackers.

The main contributions of this work are summarized as:

– We propose a novel quadruplet network for one-shot learning that utilizes the
inherent connections among multiple instances and apply it to visual tracking. To
the best of our knowledge, we are the first to introduce quadruplet network into
single object tracking.

– A weight layer is proposed for selecting suitable combination weights between triplet
and pair loss. It may take a lot of time to manually choose appropriate combination
weights while our weight layer is able to automatically adjust these weights during
each training iteration to achieve powerful features.

– By applying the proposed quadruplet network on training to get more representable
features, our detection-by-tracking method can achieve state-of-the-art results even
without online updating during tracking. Furthermore, our tracker runs beyond
real-time with high speed of 78 fps.

2 Related Work

Our work is related to a wide array of literature, in particular, one-shot learning with
generative models, learning an embedding space for one-shot learning, and visual object
tracking.

Many previous studies focus on the context of the generative models for one-shot
learning, which is different from our formulation of the problem as a discriminative
task. One early approach [10] uses probabilistic generative models to present object
categories and applies a variational Bayesian framework for learning useful information
from a handful of training samples. In [11], a recurrent spatial attention generative model
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is proposed to generate images using a variational Bayesian inference. Having seen
samples once, this method generates a set of diverse samples.

The most common discriminative approach to one-shot learning is embedding learn-
ing, where the goal is to learn an embedding space and then perform classification by
applying a simple rule in the embedding space such as finding the nearest-neighbor
of an exemplar of a novel category. Learning embeddings of objects is to represent
each object as a low-dimensional vector. It is essential in unsupervised learning and in
data preprocessing of supervised learning. A typical model for embedding learning is
Siamese networks [1]. Recently, several techniques [2,3,9] are presented to improve the
embedding performance. In [2] a learning-to-learn approach is proposed to determine the
shared weights of Siamese network. It applies a number of factorizations of the parame-
ters to make the construction feasible. In [3], a fully convolutional Siamese network is
designed for visual object tracking. As an alternative to using pairs in Siamese network,
[9] employs triplets for training by distance comparisons. In comparison, our method
combines the pairs and triplets for training to take the advantage of the underlying useful
connections (e.g. the manifold structure) among samples.

The task of visual object tracking can be viewed as an application of one-shot
learning [2]. We only provide a brief introduction of recent object tracking methods
such as correlation filter based trackers and deep neural networks based solutions.
After Kernelized Correlation Filters [12] had reported state-of-the-art performance at
hundreds of frame-per-second speed, more investigation focused on correlation filters
[13,14,15,16,5,17,18,19,20,21]. The tracking performance improved consistently, and
DSST [13] and C-COT [17] obtained the top ranks at the VOT 2014 [22] and the
VOT 2016 challenges [23], respectively. However, the speed became lower and lower,
i.e. the speed of C-COT is only 1 fps. The computational load remains as the same
problem in deep neural networks for tracking. The online learning network [24] provided
superior tracking performance, albeit its prohibitive load (near 1 fps on GPU) limits its
practicality. To accelerate deep network for tracking, some studies proposed off-line
training of models, such as DeepTrack [25], GOTURN [26] and SiamFc-3s [3], and
directly applied them for online tracking to avoid the cost of online retraining. All of
these achieve a speed of more than real-time (30 fps) with a comparable performance.
Our work is similar to SiamFc-3s, while we focus on improving off-line training phase
to obtain more robust feature representation. Thus, our method runs at a comparable
speed with SiamFc-3s yet achieves better performance.

3 Siamese Networks for Tracking

Here, we briefly review recent work on Siamese networks for object tracking [3]. When
applying one-shot learning scheme for visual tracking, the object patch in the first frame
is used as an exemplar, and the patches in the search regions within the consecutive
frames are employed as the candidate instances. The aim is to find the most similar
instance from each frame in an embedding space, where the object is represented as a low-
dimensional vector. Learning an embedding function with a powerful and discriminative
representation is a critical step in this task.
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To this end, Bertinetto et al. [3] apply a deep learning method to learn the embedding
function and design a fully convolution Siamese network to reduce computation for
real-time speed. This network includes two network branches processing different inputs.
One is the exemplar branch used to receive the object bounding box in the first frame.
The other is the instances branch applied to process the patches in searching regions of
the following frames. These two network branches share the parameters; thus they can
be seen as an identical transformation φ for different inputs. Accordingly, the similar
function for an exemplar z and an instance x is defined as f(z, x) = g(φ(z), φ(x)),
where g is a simple similarity metric such as vectorial angle and cross-correlation. In [3],
they use the cross-correlation for g, and the formulation of function f is transferred as
follows:

f(z, x) = φ(z) ∗ φ(x) + b. (1)

using the convolution ∗ operator. Then, a logistical loss is applied to the pair-wise loss
function, which is formulated as follows:

Lp(y, v) =
∑
u∈D

log(1 + e(−y[u]·v[u])). (2)

where D is the set of inputs for instances branch, y[u] ∈ {+1,−1} is the ground-truth
label of a single exemplar-instance pair (z, u), v[u] is the similarity score of (z, u) i.e.
v[u] = f(z, u).

4 Quadruplet Network

A quadruplet network (inspired by Siamese networks [1,3] and triplet networks [9])
contains four branches of the same network with shared parameters, while building
a direct connection between them through a common loss function. Our proposed
quadruplet network structure is shown in Fig. 2.

Fig. 2. The structure of our quadruplet network. Here, x, z, z+, z− are different inputs of four
shared branch networks respectively corresponding to instances, exemplar, positive and negative
branches. φ represents a convolution network with shared weights. g is a function of similarity
metric. L1, L2, and L are loss functions.
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4.1 Network branches

These four network branches are respectively named as exemplar, instances, positive,
and negative branches according to their inputs. We first introduce the input of exemplar
branch since other inputs are depended on it. An instance is randomly chosen as an
exemplar z. Then the instances with the same class are denoted as positive instances and
the others are denoted as negative instances. The inputs of instances branches (denoted
as a set D) consist of some positive instances and negative instances, which are used for
two aspects.

Firstly, these instances are used to learn an function of similarity metric f(z, x)
that compares an exemplar z to an instance x and returns a high score with a positive
instance and a low score with a negative instance. Secondly, according to these scores,
we select the instance with lowest score from positive instances as the input of positive
branch z+ and select the one with highest score from negative instances as the input
of negative branch z−. z+ and z− have the strongest representation among the inputs
of instances branch, since they are on the boundaries of classification in current small
sample space (defined on the set D). If we decrease the distance between z+ and z, and
increase it between z− and z, the corresponding positive boundary will be closer to z
and negative one will keep away from z. In other words, the margin between boundaries
of classification will be increased and it will reduce the error of classification. To achieve
this purpose, we design a new loss function for these three branches. More details are
shown in the next subsection.

4.2 Loss function

The loss function of a quadruplet network consists of two kinds of loss function. The first
one is constructed between the outputs of exemplar branch and instances branch, and the
second one connects positive, negative and exemplar branches. To give the definition
of these two loss functions, we first simplify the notation of branches. In fact, these 4
branches are an identical transformation to different inputs. Thus, we denote them as a
transformation function φ. Then the function f is transfered as f(z, x) = g(φ(z), φ(x)),
where g is a simple similarity metric such as vectorial angle and cross correlation. In
this paper, we use the cross correlation for g as the same as Siamese network [3]. And
the formulation of function f is defined as the same as the function in Eq. (1).

Then, we apply a weighted averaged logistical loss to the first pair-wise loss function,
which is formulated as follows:

L1(y, v) =
∑
u∈D

w[u] log(1 + e(−y[u]·v[u])). (3)

where D is the set of inputs for instances branch, y[u] ∈ {+1,−1} is the ground-truth
label of a single exemplar-instance pair (z, u), v[u] is the similarity score of (z, u) i.e.
v[u] = f(z, u), w[u] is the weight for an instance u, and

∑
u∈D w[u] = 1, w[u] >

0, u ∈ D. w[u] is a dynamic weight that is changed during the training process. Different
to general training method for deep learning, we first do forward computation once to
get the similarity score of each exemplar instance. If the similarity score of a negative
instance is larger than the minimum score of positive instances, it will violate the
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assumption of similarity, i.e. the score of the positive instance should be larger than
the negative instance. Thus, we amplify the penalty for this situation by increasing the
corresponding weights. In this work, we set w[u] = 2w[u] for the cases violating the
assumption, and then normalize the weights by dividing their summation. These adapted
weights are applied for forward computation and backward computation to finish a
training process.

Inspired by the triplet network [9], the second loss function is constructed by a mean
square error on the soft-max results of similarity scores between different branches.
Comparing soft-max results to (0, 1) vector, we can get the triplet loss function:

L2(s+, s−) = ‖(s+ − 1, s−)‖22, (4)

where

s+ =
ef(z,z+)

ef(z,z+) + ef(z,z−)
(5)

and

s− =
ef(z,z−)

ef(z,z+) + ef(z,z−)
. (6)

Fig. 3. The framework of a single training iteration during the tracking process, which consists of
a precomputing phase and a training phase. The green arrows represent the precomputation, which
aims to select the powerful positive and negative feature maps (z̄+ and z̄−) from feature map of
instances x̄. They produce the adapted weights for pairs loss L1. The solid arrows indicate the
training phase include the forward and backward computations. The definitions of φ,L1, L2, L
are the same as Fig. 2.

The final loss function is the weighted sum of these two loss functions:

L =
1∑2

i=1 w̄[i]

2∑
i=1

w̄[i]Li, (7)

where w̄[1], w̄[2] > 0 are the weights to balance the loss L1 and L2. They are not
prior constants but learned during training. The parameters of branch network θ and the
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weights of loss w̄ are obtained by applying Stochastic Gradient Descent (SGD) to the
problem:

arg min
θ,w̄

E L(z, z+, z−,D, y; θ, w̄). (8)

For our neural networks, we propose three new layers using L1, L2 and L losses.
The backward computation of L1 loss is similar to the logistic loss since the weights are
fixed during backward computing. We only need to add the weights into the derivatives
of logistical loss. The other two are not similar to the common loss. Thus, we give the
gradients of these two losses for backward computation.L2 loss layer can be decomposed
as a square error layer (Eq. 4) and a soft-max layer (Eq. 5, 6). We get the derivatives of
the square error as:

∂L2

∂s+
= 2(s+ − 1) = −2s−,

∂L2

∂s−
= 2s−. (9)

To avoid big gradients in the soft-max layer, we reformulate Eq. 5 as follows:

s+ =
ef+/em

(ef+ + ef−)/em
=

ef+−m

ef+−m + ef−−m
. (10)

Similarly, the reformulation of Eq. 6 becomes

s− =
ef−−m

ef+−m + ef−−m
. (11)

Where f+ and f− are similarity scores f(z, z+) and f(z, z−),m is the maximal between
f+ and f− i.e. m = max(f+, f−). Then we can get Jacobian matrix J:

J =

[
∂s+
∂f+

∂s+
∂f−

∂s−
∂f+

∂s−
∂f−

]
=

[
s+(1− s+) −s+s−
−s+s− s−(1− s−)

]
(12)

According to the chain rule, we can get the partial derivatives as follows:[
∂L2

∂f+
∂L2

∂f−

]
= JT

[
∂L2

∂s+
∂L2

∂s−

]
=

[
−4s+s

2
−

4s+s
2
−

]
(13)

The loss layer L contains two inputs (L1 and L2) and two parameters (w̄[1] and
w̄[2]), which partial derivatives are formulated as:

∂L

∂Lj
= w[j] and

∂L

∂w̄[j]
=

1

w̄2
s

(w̄sLj −
2∑
i=1

w̄[i]Li) (14)

where j = 1, 2 and w̄s =
∑2
i=1 w̄[i]. In practice, we set a small threshold T , such as

0.01, for w̄[i] to insure w̄[i] > 0 by imposing w̄[i] = max(T, w̄[i]).
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Fig. 4. The framework of online tracking. Above, z and x represent the input exemplar image
and the search image, and z̄ and x̄ are the corresponding embedding features. The score map is
calculated by the similarity between the sub-windows of x̄ and z̄. After upsampling the score map,
we find the location of the object in the search image according to the location of maximum score
in the upsampled map.

4.3 Framework of our tracker

We apply the proposed Quadruplet network on an one-shot learning problem in visual
object tracking. Given an object of interest on the first video frame, the task of single
object tracking is to find the object on the following frames. In the opinion of one-shot
learning, a sub-window enclosing the object is seen as an exemplar and the sub-windows
of each frame are viewed as a candidate of instances. The goal is to find the most similar
one with exemplar in each frame. Our tracking method consists of off-line training and
online testing stages using different network structures.

In off-line training, we use quadruplet network to achieve powerful embedding
representation. The architecture of shared convolutional network is the same as SiamFc-
3s [3], which is a variation of the network of Krizhevsky et al. [27].

As shown in Fig. 3, we simplify the quadruplet network by selecting powerful
feature patches at the last convolutional layer of instances branch instead of positive and
negative branch. Pairs of an exemplar image and a larger search image are applied to
inputs of exemplar and instances branch, where each sub-window of the same size with
the exemplar image is an candidate instance. The scores v in equation (3) will become
a score map as shown in Fig. 3. It’s label map is designed according the location i.e.
we set positive label +1 to points in the central area within radius R (R = 2 in our
experiments), which is denoted as positive area Dp, and ones in other area (negative area
Dn) are set as −1. Before each iteration training, we first precompute the score map, and
respectively select the instance in the center and the one with highest score in negative
area as the powerful positive and negative instance. Their last convolutional features are
set as the inputs of triplet loss. Otherwise, the precomputed score map is also used to
construct the weighted pair loss. The initial weights are defined as balance weights to
balancing the number of positive and negative instances. The formulation is defined as:

w[u] =

{
1

2|Dp| , u ∈ Dp
1

2|Dn| , u ∈ Dn
(15)
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If a negative score is more than the minimal of positive scores, we increase the weight
as w[u] = 2w[u] and then normalize all weights as w[u] = w[u]/

∑
w[u]. After

precomputation, we do forward and backward computation to finish a training iteration.
In online testing (tracking) phase, only the exemplar branch and the instances branch

are used. We crop an exemplar image in the first frame and also larger search images
(search region) in the consecutive frames. The search images center on the location
of the object in the previous frames. The exemplar and the search images are resized
to 127 × 127 and 255 × 255, respectively. Using these inputs, our tracking network
calculates a score map as shown in Fig. 4. Then, the score map is upsampled by bicubic
interpolation from 17 × 17 to 272 × 272 to achieve a higher location accuracy. The
location of the object is determined by the maximum score in the upsampled map.

5 Experimental Results

5.1 Implementation details

Training. We use MatConvNet [28] to train the parameters of the shared network θ and
the weights of loss w̄ by minimizing Eq. (8) with SGD. The initial values of the shared
network are copied from the trained model in SiamFc-3s [3] and the weights are set
as (0.9, 0.1). We use the same training and validation sets with [3]. They are randomly
sampled from the ‘new object detection from video challenge’ in the 2015 edition of
the ImageNet Large Scale Visual Recognition Challenge [10] (ILSVRC). The dataset
contains almost 4500 videos with 30 different classes of animals and vehicles. Training
is performed over 10 epochs, each consisting of 53,200 sampled pairs. We randomly
select 10% pairs as the validation set at each epoch, and the final network used for testing
is determined by the minimal mean error of distance (presented in [3]) on the validation
set. The gradients for each iteration are estimated using mini-batches of size 8, and the
learning rate is decayed geometrically after epoch from 10−2 to 10−5. To handle the
gray videos in benchmarks, 25% of the pairs are converted to grayscale during training.

Tracking. As mentioned before, only the initial object is selected as the exemplar
image. Thus, we compute the embedding feature φ(z) once and compare it with the
searching images of the subsequent frames. To handle scale variations, three scales
1.0375{−1,0,1} are searched for the object, and the scale is updated by linear interpolation
with a factor of 0.59 to avoid huge variation of scale. Our Intel Core i7-6700 at 3.4
GHz machine is equipped with a single NVIDIA GeForce 1080, and our online tracking
method runs at 78 frames-per-second.

5.2 Benchmarks and evaluation metric

We evaluate our tracking method, which we call as ‘Quad’ with the recent state-of-the-art
trackers in popular benchmarks including OTB-2013 [4], OTB-50, OTB-100 [29], and
VOT-2015 [30].

The OTB-2013 benchmark contains 50 challenging sequences and uses different
metrics to evaluate tracking methods. The authors expand the OTB-2013 to OTB-100
including 100 sequences and select 50 more challenging sequences denoted OTB-50 as
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a small benchmark. In this paper, we use the overlap success rate and distance precision
metrics [4] to evaluate trackers on OTB-2013, OTB-50, and OTB-100. Overlap success
rate measures the intersection-over-union (IoU) of ground-truth and predicted bounding
boxes. The success plot shows the rate of bounding boxes whose IoU score is larger
than a given threshold. We apply the overlap success rate in terms of threshold 0.5 to
rank the trackers. The precision metric means the percentage of frame locations within a
certain threshold distance from those of the ground truth. The threshold distance is set as
20 for all trackers. The VOT-2015 benchmark is a challenging dataset to evaluate the
short-term tracking performance since in VOT-2015, a tracker is restarted in the case
of a failure, where there is no overlap between the predicted bounding box and ground
truth. It contains 60 sequences collected from some previous tracking benchmarks (356
sequences in total). For this dataset, we evaluated tracking performance in terms of
accuracy (overlap with the ground-truth), robustness (failure rate), and Expected Average
Overlap (EAO which is principled combination of accuracy and robustness) [30].

Fig. 5. Results of self-comparison with different variants of our tracker. The plots show the
precision and overlap success rate on OTB-2013[4] in terms of OPE.

5.3 Ablation study

To evaluate the effect of different components in our method, we compare the tracker
SiamFc-3s [3] against different variants of our tracker: SiamInit, SiamAt, QuadC, and
Quad. SiamFc-3s-3s can be seen as the baseline of our method. Since our online tracking
method is the same with it. The difference is the training model. SiamInit is the variant
of SiamFc-3s, which is initialized with the final network parameters in SiamFc-3s and
trained again over 10 epochs. SiamAt is also a Siamese network but trained with the
proposed adapt weighted pairs loss. QuadC is the version that combines the weighted
pairs loss and the triplet loss with constant weights w̄ = [0.9, 0.1], and Quad is the final
version with the learned weights.

We evaluate these trackers with one-pass evaluation (OPE) while running them
throughout a test sequence with an initialization from the ground-truth position in the
first frame. As shown in Fig. 5, directly training more epochs (SiamInit) will improve
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precision but reduce overlap success rate compared with the baseline SiamFc-3s. This
indicates that representation power of the original network was close to its limit. More
training may not improve more performance. Thus, we seek for an alternative solution
for improvement. Firstly, we try an adapt weighted pairs loss and achieve slightly overall
improvement with increasing overlap while slightly reducing precision compared with
SiamInit. Secondly, we want to add triplet loss to mine the potential relationships among
samples further. However, directly adding triplet loss into a Siamese net with prior
weights may reduce the performance (see QuadC in Fig. 5) since the prior weights may
not be optimal for the combination of triplet loss and pair loss. To solve this problem,
we design a weight layer to choose suitable combination weights during training and
achieve better precision and overlap success rate as shown with Quad in Fig. 5.

5.4 Results on OTB-2013 benchmark

On OTB-2013 benchmark, we compare our Quad tracker against several state-of-the-art
trackers that can operate in real-time: CFnet-conv2 [6], SiamFc-3s [3], Staple [5], CN
[13], and KCF [12]. For reference, we also compare with recent trackers: DSST [13],
MEEM [31], SAMF [32], DLSSVM [33].

Fig. 6. Results of OTB-2013 [4] benchmark. Success and precision plots for OPE, SRE and TRE,
which are one-pass evaluation, spatial robustness evaluation, and temporal robustness, respectively.

Overall comparison. A conventional way to evaluate trackers is one-pass evaluation
(OPE). However, some trackers are sensitive to the initialization errors. To measure the
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performance with different initializations, we use spatial robustness evaluation (SRE)
and temporal robustness evaluation (TRE). SRE uses different bounding boxes in first
frame and TRE starts at different frames for initialization. As shown in Fig. 6, our method
outperforms over recent state-of-the-art real-time trackers in terms of the overlap success
rate and precision for OPE, SRE, and TRE, respectively. Compared with our baseline
SiamFc-3s, the results demonstrate that our training method is able to generate more
robust and powerful features for tracking. Among all trackers, our tracker outperforms in
five evaluation metric except the precision for TRE. In this metric, our method achieves
the 4th rank (0.828), which is in fact very close to the 3rd SANF (0.828) and the 2nd
MEEM (0.829). SAMF ranks 1st in precision while it ranks 6th in success for TRE.

5.5 Results on OTB-50 and OTB-100

On OTB-50 and OTB-100 benchmarks, we also compare the recent trackers mentioned
on OTB-2013 comparison.

Fig. 7. Overlap success rates of OPE (with overlap threshold 0.5) for 11 attributes on OTB-100.

Attribute-based Performance Analysis. In OTB-100 benchmark, the sequences
are annotated with 11 attributes for different challenging scenarios including Illumination
Variation (IV), Scale Variation (SV), Occlusion (OCC), Deformation (DEF), Motion
Blur (MB), Fast Motion (FM), In-Plane Rotation (IPR), Out-of-Plane Rotation (OPR),
Out-of-View (OV), Background Clutters (BC), and Low Resolution (LR).

We evaluate our method on these different attributes as shown in Fig. 7 where the
overlap success rates of OPE for overlap threshold is set to 0.5. As visible, our method
outperforms all other trackers in 8 categories: SV, OCC, LR, MB, FM, IPR, OPR,
and OV, especially in LR and IPR. In 3 categories, Staple performs the best while our
approach ranks the third best. Staple tracker is based on the correlation filter and applies
Fourier transform. We believe, integrating Fourier transform into our method will further
improve the performance our method. Compared to the baseline SiamFc-3s, our tracker



14 X. Dong et al.

has superior performance in all categories except DEF. The reason might be that the
triplet loss has to be customized to handle this situation.

(a) OTB-50 (b) OTB-100

Fig. 8. Precision and success plots ranked with overlap threshold 0.5 for OPE on OTB-50 and
OTB-100 [29] benchmark.

Overall comparison. Both precision and success metrics are reported for OPE. Fig.
8 shows that our tracker also achieve improvement compared with our baseline SiamFc-
3s in these two benchmarks in terms of precision and success metrics. In success metric,
our method performs better than all trackers on these two benchmarks. In precision
metric, our tracker achieves second best performance on OTB-50 following the first one
MEEM with slight reducing from 0.7122 to 0.7117 while we get significant improvement
from 0.542 to 0.660. Similarly, on OTB-100, our tracker ranks second (0.782) slightly
lower than the first one Staple (0.784) in precision while increases the success rate from
0.710 to 0.739.

Table 1. Evaluation on VOT-2015 by EAO, the weighted means of accuracy, robustness and speed.
(*) values from the VOT-2015 results [30] in EFO units, which roughly correspond to FPS. The
first and second best scores are highlighted in color.

Quad(ours) SiamFc-3s BDF NCC FOT ASMS FCT matFlow SKCF PKLTF sumShift
EAO 0.261 0.248 0.153 0.080 0.139 0.212 0.151 0.150 0.162 0.152 0.234
Acc. 0.553 0.550 0.401 0.500 0.432 0.507 0.431 0.420 0.485 0.453 0.517
Rob. 1.791 1.818 3.106 11.345 4.360 1.846 3.338 3.121 2.681 2.721 1.682
FPS 78 78 175* 135* 126* 101* 73* 71* 58* 26* 15*

5.6 Results on VOT-2015

In our evaluations, we use the Visual Object Tracking 2015 (VOT-2015) toolkit, which
contains the evaluation in short-term visual object tacking tasks.

Fast speed: We compare our tracker with SiamFc-3s [3] and 9 top participants
in the VOT-2015 including BDF [34], FOT [35], ASMS [36], NCC, FCT, matFlow,
SKCF, PKLTF [30], and sumShift [37]. Table 1 shows that our tracker achieves the best
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Expected Average Overlap (EAO) and the highest accuracy among the most accurate
trackers with speed more than 15 fps. Among the fast trackers, the highest robustness
(1.682) belongs to sumShift followed by ours Quad (1.791). Our tracker significantly
improves the accuracy and robustness of most participants with top speed in VOT-2015
(BDF, FOT, ASMS, NCC, FCT, matFlow, SKCF, PKLTF) and SiamFc-3s. For reference,
the comparisons of other trackers are provided in supplementary material.

6 Conclusion

We demonstrated that the proposed quadruplet network using multi-tuples for training
allows accurate mining of the potential connections among instances and achieves
more robust representations for one-shot learning. We showed that by automatically
adjusting the combinational weights between triplet and pair loss, we improve the
training performance. We analyzed the feasibility of our quadruplet network in visual
object tracking. Our results indicate that our tracking method outperforms others while
maintaining beyond real-time speed. As future work, we employ different loss functions
and extend the quadruplet networks to other computer vision tasks.
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